

Lessons Learned on Major Infrastructure Projects

Presented by:

Lawrence Arcand /Jamie Bradburn

- What the Conceptual Design Report said.
 - Minor Utility Relocations will be required, total Project Budget \$14M.
- What was NOT done!
 - SUE was not completed within the EA process...
 - An experienced Utility Coordinator was not used on the project...

- Water
- Sewer
- Telecom
- Gas
- Electrical

- Results
 - Original estimate within the EA was ~\$14M
 - Utility impacts increase cost to ~\$105M ++
- What could they have done?
 - Early SUE and UC would have provided better budget and schedule certainty.

What have we learned?

- Raise the Profile and Importance on Utility Engineering
 - UESI
- Follow Industry Best Practices
 - TAC Guideline
 - ASCE 38-02
- Utilize Technology
 - Multi-Channel GPR
 - LIDAR
 - 3D Modeling
- Sample Project
 - Hamilton LRT

Utility Engineering

- Raise the Profile and Importance of Utility Engineering on Infrastructure Projects
 - SUE Professionals
 - UC Professionals
 - Survey Professionals

Utility Engineering

Industry Best Practices

TAC Guideline

TAC Guideline

Presents a High Level Process for Utility Coordination on Infrastructure Projects

Being adopted by Agencies as a basis for their specific UC Guidelines

Currently being updated to outline the process for UC on PPP projects.

ASCE 38-02

Subsurface Utility Engineering

A specialty practice of civil engineering that investigates and depicts existing underground utilities through the collection and analysis of records, visual, geophysical, and/or exposure methods and assigns achieved Utility Quality Levels to Utility Segments based upon the integration of all the analyzed data with professional judgment at a defined point in time. SUE has evolved as a subset of Utility Engineering.

ASCE 38-02

Quality Level D

Quality Level C

Quality Level B

Quality Level A

ASCE 38 Updates

- Definition of SUE
- Quality Level C
- Quality Level B
 - Designating Precision
 - Measuring, Documenting and Depicting Depths
- Quality Level A
- Measuring, Documenting and Depicting Vaults
- Inclusion of a Utility Report

Utilize Technology

Leverage Existing Proven Technologies

Take Advantage of New Technologies

- Multi-Channel GPR
- 3D Utility Models
- LIDAR

STREAM EM

STREAM C

STREAM Units

- Multi-Channel ground penetrating radar
- 40 separate channels
- double polarized (VV and HH) antennas
- dual 200 and 600 MHz antennas
- Data is spatially tied to survey coordinates

From
Detection
to Mapping

3D Utility Models

3D Utility Models

LIDAR

- ~13 kms
- Centre Alignment
- 17 At Grade Stops
- 1 Grade separation
- 1 Operations Maintenance and Storage Facility (OMSF)
- 3 Bridges over controlled access highways

- Followed TAC Guideline
- Completed a SUE Investigation following ASCE 38-02
- PSOS written to include use of CSA S250 for As-builts and Enabling Works
- STREAM EM / C Utilized
- 3D Model of Utilities Created
- LIDAR attempted

- Integrating LIDAR data with 3D Utility Model
- Challenges of tying LIDAR to project Survey Control.

Time to Take Action!

- Raise the Profile and Importance on Utility Engineering
 - UESI
- Follow Industry Best Practices
 - TAC Guideline
 - ASCE 38-02
- Utilize Technology
 - Multi-Channel GPR
 - 3D Modeling
 - LIDAR

THANK-YOU!

Lawrence Arcand, P.Eng.

President, T2 Utility Engineers

Lawrence.Arcand@T2ue.com

Jamie Bradburn

Canadian Operations Manager, T2 Utility Engineers

Jamie.Bradburn@T2ue.com

